If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7b^2+13b=0
a = -7; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-7)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-7}=\frac{-26}{-14} =1+6/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-7}=\frac{0}{-14} =0 $
| 6(1-2v)=-6(v+8) | | 12x+42=6 | | 120=6x-12 | | 77=3.5(13+b) | | 2x+49=115 | | 3x+45°=81° | | (x+4)(x+8)=184 | | 2x–7=13 | | 4^z=64 | | 55=0.5j+ | | 5−–3m=11 | | 2x-3x^2-39x+20=0 | | 20−17w=–10−19w | | f/2−–1=4 | | 616x=5 | | 72=18f | | (6x-44)°=88 | | v/4+13=17 | | 25x=98 | | 26-2a=2 | | v4+ 13=17 | | )|3x−12|=3 | | a-15=22 | | -18n-9=45 | | 54=9(x+2) | | 2x−1)(x+4)=0 | | 6(-5+3n)=-120 | | 13=5-4e | | 5(x+2)+x=-14 | | 4a+12=124 | | 91=1+3(3p+6) | | 8(x+2)+19x=5x+17 |